Hall Ticket Number:

Code No. : 41524 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (IT) IV Year I-Semester Supplementary Examinations, May-2019

VLSI Design

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Give the syntax for NMOS and PMOS Switches supported by Verilog HDL.
- 2. List various gate delays supported by Verilog HDL.
- 3. Illustrate the concept of Bubble Pushing with example.
- 4. What is body bias effect? And how does it affect threshold voltage?
- 5. Draw side-view and top-view of NMOSFET and PMOSFET.
- 6. List the layers used to create MOSFET.
- 7. List lambda based designed rules for polysilicon and n-well.
- 8. Define rise time and fall time in CMOS inverter and give the expression for it.
- 9. Draw the generalized block diagram for NOR Based ROM.
- 10. Why SRAM is faster switching compared to DRAM, give details.

Part-B (5 ×10=50 Marks)

 b) Write a Verilog code to design 4 by 1 multiplexer in gate level modeling. 12. a) Design a CMOS logic for AOI F = AB + CD. b) Design XOR and XNOR gate using transmission gate based logic. 13.a) Draw the layouts for series and parallel connected FETs. b) Draw the stick diagram for CMOS logic F = A(B + C). 14.a) Write a short note on cell based design. b) Drive the expression for minimum delay in inverter cascade. 15.a) Explain the operation of 8-bit carry skip adder with neat diagram. b) Describe read and write operation of 6T-SRAM cell with diagram. 16.a) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (IDS) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). c) Explain read and write operation of 1-T DRAM cell with neat diagram. 	11. a)	Write a short note on various timing controls supported by Behavioural modeling.	[5]
 b) Design XOR and XNOR gate using transmission gate based logic. 13.a) Draw the layouts for series and parallel connected FETs. b) Draw the stick diagram for CMOS logic F = A(B + C). 14.a) Write a short note on cell based design. b) Drive the expression for minimum delay in inverter cascade. 15.a) Explain the operation of 8-bit carry skip adder with neat diagram. b) Describe read and write operation of 6T-SRAM cell with diagram. 16.a) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	b)	Write a Verilog code to design 4 by 1 multiplexer in gate level modeling.	[5]
 13.a) Draw the layouts for series and parallel connected FETs. b) Draw the stick diagram for CMOS logic F = A(B + C). 14.a) Write a short note on cell based design. b) Drive the expression for minimum delay in inverter cascade. 15.a) Explain the operation of 8-bit carry skip adder with neat diagram. b) Describe read and write operation of 6T-SRAM cell with diagram. 16.a) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	12. a)	Design a CMOS logic for AOI $F = \overline{AB + CD}$.	[5]
 b) Draw the stick diagram for CMOS logic F = A(B + C). 14.a) Write a short note on cell based design. b) Drive the expression for minimum delay in inverter cascade. 15.a) Explain the operation of 8-bit carry skip adder with neat diagram. b) Describe read and write operation of 6T-SRAM cell with diagram. 16.a) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	b)	Design XOR and XNOR gate using transmission gate based logic.	[5]
 14.a) Write a short note on cell based design. b) Drive the expression for minimum delay in inverter cascade. 15.a) Explain the operation of 8-bit carry skip adder with neat diagram. b) Describe read and write operation of 6T-SRAM cell with diagram. 16.a) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	13.a)	Draw the layouts for series and parallel connected FETs.	[5]
 b) Drive the expression for minimum delay in inverter cascade. 15.a) Explain the operation of 8-bit carry skip adder with neat diagram. b) Describe read and write operation of 6T-SRAM cell with diagram. 16.a) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	b)	Draw the stick diagram for CMOS logic F = $\overline{A(B+C)}$.	[5]
 15.a) Explain the operation of 8-bit carry skip adder with neat diagram. b) Describe read and write operation of 6T-SRAM cell with diagram. 16.a) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	14.a)	Write a short note on cell based design.	[4]
 b) Describe read and write operation of 6T-SRAM cell with diagram. b) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	b)	Drive the expression for minimum delay in inverter cascade.	[6]
 16.a) Differentiate between blocking and non-blocking assignment in verilog HDL. b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	15.a)	Explain the operation of 8-bit carry skip adder with neat diagram.	[4]
 b) Derive the expression for Drain current (I_{DS}) for nMOS transistor. 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	b)	Describe read and write operation of 6T-SRAM cell with diagram.	[6]
 17. Answer any <i>two</i> of the following: a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	16.a)	Differentiate between blocking and non-blocking assignment in verilog HDL.	[4]
 a) Draw the layouts of following basic structures i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	b)	Derive the expression for Drain current (IDS) for nMOS transistor.	[6]
 i) n-well ii) mask for nFET iii) mask for pFET b) Discuss in brief DC characteristics of CMOS inverter and derive the expression for mid point voltage (V_M). 	17.	Answer any <i>two</i> of the following:	
point voltage (V _M).	a)	i) n-wellii) mask for nFET	[5]
c) Explain read and write operation of 1-T DRAM cell with neat diagram.	b)	Discuss in brief DC characteristics of CMOS inverter and derive the expression for midpoint voltage (V_M).	[5]
	c)	Explain read and write operation of 1-T DRAM cell with neat diagram.	[5]